Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(13): e202317628, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38305482

RESUMEN

The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial-level current densities (i.e., 200 mA cm-2 ) for 300 h on membrane electrode assembly using scalable lattice-distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm-2 , reaching a production rate of 21.7 mmol cm-2 h-1 . To assess the practicality of this system, we perform a comprehensive techno-economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air-breathing formic acid fuel cells, boasting a power density of 55 mW cm-2 and an exceptional thermal efficiency of 20.1 %.

2.
J Colloid Interface Sci ; 652(Pt B): 1578-1587, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666190

RESUMEN

Excellent porosity and accessibility are key requirements during carbon-based materials design for energy conversion applications. Herein, a Ni-based porous supramolecular framework with graphite-like morphology (Ni-SOF) was rationally designed as a carbon precursor. Ultrathin carbon nanosheets dispersed with Ni nanoparticles and Ni-Nx sites (Ni@NiNx-N-C) were obtained via in-situ exfoliation during pyrolysis. Due to the hetero-porous structure succeeding from Ni-SOF, the Ni@NiNx-N-C catalyst showed outstanding bifunctional oxygen electrocatalytic activity with a narrow gap of 0.69 V between potential to deliver 10 mA cm-2 oxygen evolution and half-wave potential of oxygen reduction reaction, which even surpassed the Pt/C + IrO2 pair. Therefore, the corresponding zinc-air battery exhibited excellent power output and stability. The multiple Ni-based active sites, the unique 2D structure with a high graphitization degree and large specific surface area synergistically contributed to the excellent bifunctional electrocatalytic activity of Ni@NiNx-N-C. This work provided a novel viewpoint for the development of carbon-based electrocatalyst.

3.
Brain Behav Immun ; 114: 325-348, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683962

RESUMEN

Acquired peripheral hearing loss (APHL) in midlife has been identified as the greatest modifiable risk factor for dementia; however, the pathophysiological neural mechanisms linking APHL with an increased risk of dementia remain to be elucidated. Here, in an adult male mouse model of noise-induced hearing loss (NIHL), one of the most common forms of APHL, we demonstrated accelerated age-related cognitive decline and hippocampal neurodegeneration during a 6-month follow-up period, accompanied by progressive hippocampal microglial aberrations preceded by immediate-onset transient elevation in serum glucocorticoids and delayed-onset sustained myelin disruption in the hippocampus. Pretreatment with the glucocorticoid receptor antagonist RU486 before stressful noise exposure partially mitigated the early activation of hippocampal microglia, which were present at 7 days post noise exposure (7DPN), but had no impact on later microglial aberrations, hippocampal neurodegeneration, or cognitive decline exhibited at 1 month post noise exposure (1MPN). One month of voluntary wheel exercise following noise exposure barely affected either the hearing threshold shift or hippocampal myelin changes but effectively countered cognitive impairment and the decline in hippocampal neurogenesis in NIHL mice at 1MPN, paralleled by the normalization of microglial morphology, which coincided with a reduction in microglial myelin inclusions and a restoration of microglial hypoxia-inducible factor-1α (HIF1α) expression. Our results indicated that accelerated cognitive deterioration and hippocampal neuroplastic decline following NIHL are most likely driven by the maladaptive response of hippocampal microglia to myelin damage secondary to hearing loss, and we also demonstrated the potential of voluntary physical exercise as a promising and cost-effective strategy to alleviate the detrimental impact of APHL on cognitive function and thus curtail the high and continuously increasing global burden of dementia. Furthermore, the findings of the present study highlight the contribution of myelin debris overload to microglial malfunction and identify the microglial HIF1α-related pathway as an attractive candidate for future comprehensive investigation to obtain a more definitive picture of the underlying mechanisms linking APHL and dementia.

4.
Front Cardiovasc Med ; 9: 1013031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337881

RESUMEN

Objective: Cerebral aneurysms are classified as severe cerebrovascular diseases due to hidden and critical onset, which seriously threaten life and health. An effective strategy to control intracranial aneurysms is the regular diagnosis and timely treatment by CT angiography (CTA) imaging technology. However, unpredictable patient movements make it challenging to capture sub-millimeter-level ultra-high resolution images in a CTA scan. In order to improve the doctor's judgment, it is necessary to improve the clarity of the cerebral aneurysm medical image algorithm. Methods: This paper mainly focuses on researching a three-dimensional medical image super-resolution algorithm applied to cerebral aneurysms. Although some scholars have proposed super-resolution reconstruction methods, there are problems such as poor effect and too much reconstruction time. Therefore, this paper designs a lightweight super-resolution network based on a residual neural network. The residual block structure removes the B.N. layer, which can effectively solve the gradient problem. Considering the high-resolution reconstruction needs to take the complete image as the research object and the fidelity of information, this paper selects the channel domain attention mechanism to improve the performance of the residual neural network. Results: The new data set of cerebral aneurysms in this paper was obtained by CTA imaging technology of patients in the Department of neurosurgery, the second affiliated of Guizhou Medical University Hospital. The proposed model was evaluated from objective evaluation, model effect, model performance, and detection comparison. On the brain aneurysm data set, we tested the PSNR and SSIM values of 2 and 4 magnification factors, and the scores of our method were 33.01, 28.39, 33.06, and 28.41, respectively, which were better than those of the traditional SRCNN, ESPCN and FSRCNN. Subsequently, the model is applied to practice in this paper, and the effect, performance index and diagnosis of auxiliary doctors are obtained. The experimental results show that the high-resolution image reconstruction model based on the residual neural network designed in this paper plays a more influential role than other image classification methods. This method has higher robustness, accuracy and intuition. Conclusion: With the wide application of CTA images in the clinical diagnosis of cerebral aneurysms and the increasing number of application samples, this method is expected to become an additional diagnostic tool that can effectively improve the diagnostic accuracy of cerebral aneurysms.

5.
J Agric Food Chem ; 57(13): 5918-24, 2009 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19530680

RESUMEN

A water-soluble glucan, namely, PD3, was isolated from the fruiting body of Dictyophora indusiata as the method reported previously. Its chemical structure was characterized by GC, FTIR, and (13)C NMR. The results indicated that PD3 is a (1-->3)-beta-D-glucan, with (1-->6)-beta-glucopyranoside side branches. The chain conformation and morphology of PD3 in aqueous solution were investigated by viscometry, rheometer, and laser light scattering (LLS) measurements, atomic force microscopy (AFM), and transmission electron microscopy (TEM), respectively. The weight-average molecular mass (M(w)), radius of gyration (R(g)), hydrodynamic radius (R(h)), and intrinsic viscosity ([eta]) of PD3 in water were determined to be 5.1 x 10(5), 141 nm, 44 nm, and 1440 cm(3) g(-1), respectively, by LLS and viscometry. The structural parameter rho (Rg/Rh) of PD3 was calculated to be 3.4, and the [eta] dependence of C(NaOH) of PD3 is similar to that of triple helical polysaccharides Scleroglucan and Lentinan, suggesting that PD3 exists as a triple helical chain in water. This conclusion was further proved by rheological measurement and AFM observation. Interestingly, the [eta] of PD3 dramatically decreased in a narrow range concentration of NaOH between 0.18 and 0.22 M, higher than that of Scleroglucan and Lentinan (both less than 0.1 M), indicating the helix-coil conformation transition of PD3 is more difficult than that of Scleroglucan and Lentinan. Moreover, with the increase of concentration, PD3 trends to self-assemble to fibrous aggregates in aqueous solution as measured by TEM.


Asunto(s)
Basidiomycota/química , Cuerpos Fructíferos de los Hongos/química , beta-Glucanos/química , beta-Glucanos/aislamiento & purificación , Fenómenos Químicos , Microscopía Electrónica de Transmisión , Conformación Molecular , Estructura Molecular , Reología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...